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EXISTENCE OF SOLUTIONS FOR THE SYSTEM OF EQUATIONS 

DESCRIBING THE FILTRATION OF A BURNING GAS 

Yu. M. Laevskii UDC 536.46 

A two-temperature model describing the propagation of combustion waves in a chemically 
inert porous medium was discussed in [i] for the filtration of a combustible gas mixture. 
The approximate solution obtained there described satisfactorily the experimental results 
obtained at the Institute of Chemical Kinetics and Combustion (Siberian Branch, Academy of 
Sciences of the USSR). The physical basis of the process is the recovery of energy from con- 
ductive transport in the soiid structure and heat exchange between the phases. Pressure 
gradients are ignored in the treatment; this corresponds to experimental conditions. 

One of the questions f~hich arises in a qualitative study of the model is the existence 
of solutions of the corresponding system of equations. There are several papers in which 
the propagation problem for an exothermal reaction front is solved for a one-temperature 
model (cf. [2] and the bibliography given there). 

For particular assumption s on the analogy between the concentration and temperature 
fields and the reaction rate function (see [3]), where the monotonicity of the solution as 
a function of the wave velocity was used in an essential way. In the present paper, the 
existence of the solution to the equations governing the process referred to above will be 
demonstrated. It turns out that the solution is not monotonic with respect to the wave ve- 
locity, and thus the proof of [3] does not apply. We give an asymptotic formula for the 
wave velocity which corresponds to the approximate solution of [i]. 

i. Statement of the Problem. As in [i], the steady-state equations for the propaga- 
tion of combustion waves in an inert, porous medium for the filtration of a combustible gas 
mixture have the form 

ae d~O/dx 2 + udO/dz  + ~ e ( T  - -  O) = O, 

(v - -  u )dT /dx  § ~ z ( T  - -  O) = (Q/cr)w(n,  T),  (1.1) 
(v - -  u)dn/dx = - - w ( n ,  T),  u =/= v, 

where @ and T are the temperatures of the solid structure and gas, respectively; n, relative 
mass concentration of the solute; v, flow velocity; u, wave velocity; ~e = ~0S/(i -- ~)oepe; 
a T ~ o~o~ o = (1--~)OePe/(~OT@T) ; ~o, heat-exchange coefficient; S, specific area; e, porosity 
constant; ~ Pe and CT, PT, specific heats and densities of the solid structure and gas, 
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respectively; ae thermal conductivity of the solid; Q, heat of the reaction; and w(n, T), 
reaction rate function. The parameters v and PT are taken from the initial mixture (from 
the equation of continuity). It is assumed that a >> i, so that the thermal inertia of the 
solid phase is much greater than that of the gas. Hence we do not consider conductive trans- 
port in the gas in our model. 

Equations (i.i) are considered for --= < x < = with the conditions 

x = - - ~ ,  O = To, T = 

x : + o o ,  O is the temperature of the 

The correctness of condition (l.2a) follows 
this case is the solution at x =-~ a stationary 
ing conditions for the reaction rate function 

w(n,  T)  : O, T - ~ T 1 ,  T i > T o ,  

w(n,  T ) > O ,  T >  Ti ,  n > O ,  w(0, T) = 0. (1.3) 

The above conditions imply that there exists a straight line segment O = T of stationary 
points on which the point O = To, T = To is included. From (l.2a), we can lower the order 
of the system (i.i). Multiplying the first equation by-o, the third by Q/CT, adding all 
three equations and integrating the result from--~ to x, we find the following system of 

equations 

dz z o ( o - - T ~  ~ + CT (1.4) 

dT ~T d~ = ~-------~(O~-- T) Q d_~ d~ _ I ~ w (n, T). 
c T d x ,  d x  v - -  

We w i l l  a s s u m e  t h a t  T ( 0 ,  u )  = T1 i n  ( 1 . 4 ) .  T h e n  t h e  s o l u t i o n  f o r  x < 0 c a n  b e  w r i t t e n  
in the form 

0 (x, u) = T O + r i (T i  - -  To) e ~i~, 

e "~ ,  n (x, u) = l ,  T (z,  u) = To + (Ti  -- To) 

where ~ > 0. Here we use the notation r i = 1 + 
characteristic equation 

~ 2 +  Foo +~__2_ ~ ~ % 

To, n = t ;  (l.2a) 

solid structure, n : ne < t .  ( 1 . 2 b )  

from the relation w(n, To) = 0. Only for 
point of (i.I). We will assume the follow- 

(v -- u)~i/aT, where ~i are the roots of the 

~- - (~+~)~  - -0 .  
U--/$ 

In order that there exist a positive root ~ (the roots of the equation are real), the in- 
equality u < v/(i + o) must be satisfied. Note that the inequality u > v is contrary to the 
result of integrating the third equation of (1.4) from -oo to +r with the use of condition 
(1.3). Hence we are led to a Cauchy problem for (1.4) with the initial conditions 

@(0, u) = To + rl(T1 - -  To), T(0, u) = T1, n(0,  u) = 1. ( 1 . 5 )  

It is required to prove the existence of a u < v/(l + o) such that the temperature O is 
bounded at x § +~ [condition (l.2b)]. We will demonstrate that the functions O and T have 
finite bounds. The system (1.4) has an additional stationary point 

O :  T : To-~ 0 v - - u  ( 1 , 6 )  c T v - ( l i o )  u' n : O .  

It will be shown that the solution is bounded as this point is approached. The dependence 
of the stationary point on the wave velocity is a function of the details of the model, un- 

like the classical case. 

2. Existence of the Solution. We introduce variables Yl and Y2, satisfying 

rlgl  + r2g~ = 0 - -  To, gl + g~ : T + Qn/c T - To - -  Q / C T .  ( 2 . 1 )  

This transformation is nonsingular because the determinant r~ --r2 = [(v- u)/a T] (~i --~2) 
0. The equations for y: and Y2 take the form 

dy 1 r~ ~r Q ( l - - n ) ,  d,x - - ~ i ! t l  A- r 1 - %  v - u  c r ( 2 . 2 )  

d x '  : B 2 Y ~  r 1 - -  r 2 u - -  u c T 
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According to (1.5), the initial conditions are 

yx(0, u) - -  T~ - -  TO, y~(0, u) = O .  (2.3) 

v--u ~i (r~--r~) and the dimensionless parameter q = (Q/cT)/ We introduce the function ~(u)= a T rs 

(T, --To). The solution of (2.2) and (2.3) satisfies the integral relations 

gl 

/ 
T i -- T O e~tlx q~l ~ e - ~  (t -- n) ds , 

0 

(2.4) 

x 

Y2 q~ = q-7~'~ ~t~ e ~2(~-~) (1 - -  n) ds. 
0 

Because 0 < n(x, u) < i [this follows from (1.3)] and r2 < 0 (this follows from the inequality 
2 < "-~T/(v --u), we have ~(u) > 0 and 

L e t  m (x, u) : V1 .! e-~t~nds" 
0 

form 

T 1 -- T O 
q ~ (e ~ - 1) < y2 (x, u) < O. 

r2~t 2 

Then the first integral relation of (2.4) 

(2.5) 

can be rewritten in the 

T 1 -- T O 
Yl = ~ [((~ -- [(i -- ff~)) e Jtlx -]- q]. (2.6) 

It follows from this that y~(x, u) is bounded if and only if the following inequality is 
satisfied 

I ~ (~) - q (i - m (x, u ) ) l% const e - " ~ .  
(2.7) 

Let mo~(u)= lirnm(x, u)~ ~t I I e ~l~ndx. For u < v/(l + o) this function is continuous and 0 < 
~-~co 0 

m~(u) < i. In addition, m=(u) = 1 if and only if n(x, u) ~ i. It can be shown that ine- 
quality (2.7) is equivalent to the following equality (from the point of view of bounding 
the solution) : 

~(u) = qO - m~(u)) (2.8) 

We do not discuss the existence of solutions to (2.8) for now, but show that this proof gives 
co 

n _pls 

the solution of the problem stated in Sec. i. Let n -~ n e for x § +r Then H~ e nds-+ne, 

and from (2.8) it follows that we now show that 

y].---->- [ ( T  1 - -  T 0 ) / f ~ ] q ( i  - -  ne). ( 2 . 9 )  

We now show that if u satisfies (2.8), the temperature 6) is a monotonically increasing func- 
tion of x. From (2.1) and (2.2), it follows that d6)/dx = ~irlyl + ~t2r292. Substituting (2.4) 
into this relation and using (2.8) we obtain 

dO _ r l - -  Ta t h r l  | J  e w (n, T) ds + e~2(~-~)w (n, T) ds 
d x  q~ v - - u  q 

,-~c 0 

Conditions (1.3) give the required proof. Because y~ and Y2 are bounded, it follows that 
6) and T are also bounded. From the fact that 6) is monotonic, it follows that @-+ 6)e. Be- 
cause yt has a finite limit (2.9), then Y2 also has a finite limit, and hence T -> T e. It 
is known (cf. [4]) that @e, Te, and n e are stationary points. From the monoto'nicity of 6) 
we have Oe > @(0, u ) >  T z ,  i.e., the stationary point is given by (1.6). 

It remains to be shown whether (2.8) is soluble for u < v/(l + o). It was shown in 
[5] that r + ~))-~ 0 and q0(u)-+-5oo for u § -~. Hence for uo = v(l + o) -- ~ we have 
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~(Uo) = o(~)) .  The function m (u) is representable in the form 

x 
-~1~-  2 - -  [F(~'T)d~ 

V - - U J  n 

m ~  (u) = ~ l  e o dx .  
0 

Using the fact that ~1(uo) = 0(6) and T(I, Uo) = T~ + 0(~), we obtain 

moo (Uo) ~ 0 (5) I + . e-~  . 
i 

We require that the following inequality be satisfied 

WT(I, T 1 + O ) ~ > k 1 >  0. ( 2 . 1 0 )  

where ko and k~ are positive constants. From this inequality it follows that, independently 
of ~, there exists a positive constant k2 such that moo(u~) < 1- k2. It follows at once 
from this that (2.8) is soluble. The restriction (2.10) on-'the function w~ is not overly 
severe. In our treatment, there is a certain arbitrariness in the cut-off point TI (in fact, 
we consider an Arrhenius heat source). Setting T~ equal to its maximum possible value, the 
inequality (2.10) can be satisfied. Restrictions on TI are considered in [6]. 

Thus the existence of the solution to (i.i), (1.2) has been proven. The existence con- 
ditions are requirements on the reaction rate function (1.3), (2.10). 

3. Wave Velocity at Large Activation Energies. A large activation energy for a chemical 
reaction means that E/RT~ >> i. This in turn leads to the approximate relation m~(u) ~ 0. 
Then the equation for the wave velocity takes the form 

~(u) = q, ( 3 . 1 )  

It was shown in [5] that when o > i, the function ~(u) monotonically decreases from 
to zero as u varies from-~ to v/(l + a). It follows from this that the solution of (3.1) 
is unique. In [I] the same equation was obtained as a condition that the temperature of the 
solid phase 6) be continuous across the boundary between the heating and cooling regions. We 
note that the solution of (3.1) is a lower bound of the solution of (2.8). In the use of 
(3.1), it is essential that T~ be the maximum possible value. In [i] this corresponds to 
the requirement that the chemical reaction range be narrow in comparison to the range of the 
temperature @. Then the transition between the heating and cooling regions in the solid 
phase can be considered as continuous. This means that if we take a cut-off point T[ < T~ 
and calculate the corresponding function m~(u), one cannot put mg(u) ~ 0. Indeed, let T(xo, 

oe 

= T', where xo < 0. Then q'~ Q-~-](T'I--To)~e-~~ Further, in'(u)=~ii'e-~Kx-%)1~ds. U) 
cT | J 

XO 

U s i n g  t h e  f a c t  t h a t  n ( x ,  u )  : 1 f o r  Xo < x < O, we o b t a i n  m'~ (u) ---- t - -  e~lx~ (l  - -  m~ (u)). T h e n  we 
have 

(u) = q ( i  - -  m:~(u)) = q' (1 - -  m ' ( u ) ) .  

b u t  i f  m ~ ( u )  ~ 0 t h e n  m ~ ( u ) ~ l - -  e ~'V~ a n d  o n e  c a n n o t  p u t  m ~ ( u )  = O. C a l c u l a t i o n s  u s i n g  
(3.1) done in [i] have shown its versatility over a wide range of parameters when compared 
to the experimental data. 
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